17-Network Matrices Text: 9

ECEGR 451 Power Systems

Dr. Henry Louie

Topics

- Component Modeling
 - Short Transmission Line
 - Medium/Long Transmission Line
 - Off-Nominal Transformer
- Ybus
 - Network Solution
 - Generator Modeling
 - Matlab
 - Network Reduction

Dr. Henry Louie

Network Matrices

- We use matrices because power systems are large
- Convenient to express voltage and current relationships in matrices
 - computationally efficient
 - lends itself to computer implementation
 - will be used later in power flow analysis

Dr. Henry Louis

Bus Admittance Matrix

- Goal: express network voltage and current relationships as *I=Y_{bus}V* where:
 - I is a column matrix of node current injections (not identity matrix)
 - Y_{bus} is the admittance matrix
 - V is a column matrix of node voltages
- Each component element of the interconnected network is a branch (even connections to ground)
- Branches are modeled as an admittance y (primitive admittance), or impedance z (primitive impedance)

Dr. Henry Louis

Notation Change

- Previously:
 - **z**: impedance per length (e.g. Ω/m)
 - y: admittance per length (e.g. S/m)
- Hereafter:
 - **z**: impedance in per unit (length accounted for)
 - ${f \cdot}$ ${f y}$: admittance in per unit (length accounted for)

$$y = \frac{1}{z}$$

Dr. Henry Loui

Short Line

- Consider the 2-bus system
- · Transmission line a:
 - short model with series impedance = z_a or series admittance = y_a

 $\mathbf{y}_{a} = \frac{1}{2}$

Do not confuse series admittance with shunt admittance

Dr. Henry Loui

Generator Modeling

- \mathbf{Y}_{bus} models the network, what about generators?
- Simple generator model: voltage source (emf) behind an impedance $\mathbf{E}_{a} = \mathbf{I}_{a}\mathbf{z}_{s} + \mathbf{V}_{a}$
- Sometimes it is more convenient to model as a current source: $\mathbf{I}_s = \mathbf{E}_a^a + \mathbf{V}_a \mathbf{y}_s$ where $\mathbf{y}_s = \frac{1}{\mathbf{z}_s}$

Dr. Henry Louie

Generator Modeling

- Voltage or current source formation can be used to form **V** or **I** in the equation: **V** = **Y**_{hus}**I**
- Gen.
 - emf: 0.90∠0° p.u.
 - z_s = j1.25 p.u.
- Gen. 5
 - emf: $0.80 \angle -70^{\circ}$ p.u.
 - $z_s = j1.25 p.u.$

Dr. Henry Louie

Generator Modeling

- Use a current source model:
- Gen 1: $\mathbf{I}_{si} = \frac{0.90 \angle 0}{j1.25} = 0.72 \angle -90^{\circ}$
- Gen 2: $\mathbf{I}_{s5} = \frac{0.80 \angle -70}{j1.25} = 0.64 \angle -160^{\circ}$
- · We can now write the bus injection vector as

$$\mathbf{I} = \begin{bmatrix} 0.72 \angle -90^{\circ} \\ 0 \\ 0 \\ 0 \\ 0.64 \angle -160^{\circ} \end{bmatrix}$$

Dr. Henry Louis

Generator Modeling

Here is the same network data as before, but with the generators included as current sources in parallel with admittances

Dr. Henry Louie

Using Y_{bus}

• Corresponding matrix equation (ignoring resistance to simplify) is:

0.72∠ – 90°		-j19.56		0	0	0	$ \mathbf{V}_1 $	
0		j18.76	-j29.27	j4.0	j6.67	0	V ₂	
0	=	0	j4.0	-j7.78	j4.0	0	V ₃	
0		0	j6.67	j4.0	-j23.01	j12.50	V ₄	
0.72∠-160°		0	0	0	j12.50	-j13.30	V _s	

· See example 9.7 for details

Dr. Henry Lou

Network Solution

- We have Y_{bus}, now what?
- Most often we know the current from the generators and into the loads, but not the bus voltages
- · Find bus voltages through matrix operations

$$\boldsymbol{I} = \boldsymbol{Y}_{\text{bus}} \boldsymbol{V} \qquad \left(\boldsymbol{Y}_{\text{bus}}\right)^{-1} \boldsymbol{I} = \boldsymbol{V}$$

What is (Y_{bus})-1?

$$\left(\boldsymbol{Y}_{\text{bus}}\right)^{-1} = \text{inv}\left(\boldsymbol{Y}_{\text{bus}}\right) = \boldsymbol{Z}_{\text{bus}}$$

Or. Henry Lou

Network Solution

• Zbus: bus impedance matrix

 $\boldsymbol{V} = \boldsymbol{Z}_{bus} \boldsymbol{I}$

· note: generally

$$\begin{bmatrix} \frac{1}{Y_{11}} & \frac{1}{Y_{12}} \\ \frac{1}{Y_{21}} & \frac{1}{Y_{22}} \end{bmatrix} \neq \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$$

- **Z**_{bus} is:
 - not sparse
 - useful in fault studies and contingency analysis
 - we will discuss in future lectures

Dr. Henry Loui

Network Solution

- We tend to use \mathbf{Y}_{bus} over \mathbf{Z}_{bus} because \mathbf{Y}_{bus} can be determined by inspection
- Computing $\boldsymbol{Z}_{\text{bus}}$ is computationally burdensome
- We don't need to explicitly find $\boldsymbol{Z}_{\text{bus}}$ to solve our equation
- We can use LU factorization (see text section 9.2 for details)
- We will rely on Matlab for matrix computations

or. Henry Louie

Matlab Example

· from Matlab, we found

$$\boldsymbol{Z}_{\text{bar}} = \begin{bmatrix} ji.021 & ji.012 & ji.013 & j0.959 & j0.901 \\ ji.012 & ji.055 & ji.056 & j0.999 & j0.939 \\ ji.013 & ji.056 & ji.215 & ji.057 & j0.994 \\ j0.959 & j0.999 & ji.057 & ji.057 & j0.993 \\ j0.901 & j0.939 & j0.994 & j0.993 & ji.009 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 1.08\angle - 30.16^{\circ} \\ 1.092\angle - 31.17^{\circ} \\ 1.12\angle - 32.27^{\circ} \\ 1.087\angle - 33.33^{\circ} \\ 1.06\angle - 34.89^{\circ} \end{bmatrix}$$

Dr. Henry Louie

Network Reduction

- Now that we have both the current injected as well as the voltage at each bus, we can compute the power
- · We will save that for later
- For large power systems, the size of the Y_{bus} can be a burden on memory (this isn't as true as it used to be)
- · Can we reduce its size?

Dr. Henry Louis

Network Reduction

- Observation: current injection is always zero when there are no external loads or generators connected
- We can eliminate the nodes and reduce the matrix size
- The procedure is also known as Kron Reduction

Dr. Henry Louis

Network Reduction

· Assume we are given:

$$\begin{bmatrix} \boldsymbol{I}_1 \\ \boldsymbol{I}_2 \\ 0 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_1 \\ \boldsymbol{V}_2 \\ \boldsymbol{V}_3 \end{bmatrix}$$

- 1. we can eliminate the third node by expressing ${\bf V}_3$ in terms of ${\bf V}_1$ and ${\bf V}_2$
- 2. the dependence of \mathbf{I}_1 and \mathbf{I}_2 on \mathbf{V}_1 , \mathbf{V}_2 and \mathbf{V}_3 may be expressed in terms of \mathbf{V}_1 and \mathbf{V}_2 only
- 3. collect terms into a new 2 x 2 matrix

Dr. Henry Loui

Network Reduction

1. We can eliminate the third node by expressing V_3 in terms of \boldsymbol{V}_1 and \boldsymbol{V}_2

$$\begin{bmatrix} \boldsymbol{I}_1 \\ \boldsymbol{I}_2 \\ 0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{Y}_{11} & \boldsymbol{Y}_{12} & \boldsymbol{Y}_{13} \\ \boldsymbol{Y}_{21} & \boldsymbol{Y}_{22} & \boldsymbol{Y}_{23} \\ \boldsymbol{Y}_{31} & \boldsymbol{Y}_{32} & \boldsymbol{Y}_{33} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{bmatrix}$$

$$0 = \boldsymbol{Y}_{31} \boldsymbol{V}_1 + \boldsymbol{Y}_{32} \boldsymbol{V}_2 + \boldsymbol{Y}_{33} \boldsymbol{V}_3$$

$$\boldsymbol{V}_3 = -\frac{\boldsymbol{Y}_{31}}{\boldsymbol{Y}_{33}} \boldsymbol{V}_1 - \frac{\boldsymbol{Y}_{32}}{\boldsymbol{Y}_{33}} \boldsymbol{V}_2$$

Network Reduction

2. the dependence of \bm{I}_1 and \bm{I}_2 on \bm{V}_1 , \bm{V}_2 and \bm{V}_3 may be expressed in terms of \bm{V}_1 and \bm{V}_2 only

$$\begin{bmatrix} \boldsymbol{I}_1 \\ \boldsymbol{I}_2 \\ 0 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_1 \\ \boldsymbol{V}_2 \\ \boldsymbol{V}_3 \end{bmatrix}$$

$$\boldsymbol{I}_{1} = Y_{11}\boldsymbol{V}_{1} + Y_{12}\boldsymbol{V}_{2} + Y_{13}\left(-\frac{Y_{31}}{Y_{33}}\boldsymbol{V}_{1} - \frac{Y_{32}}{Y_{33}}\boldsymbol{V}_{2}\right)$$

$$\begin{split} \boldsymbol{I}_1 &= Y_{11} \boldsymbol{V}_1 + Y_{12} \boldsymbol{V}_2 + Y_{13} \bigg(-\frac{Y_{31}}{Y_{33}} \, \boldsymbol{V}_1 - \frac{Y_{32}}{Y_{33}} \, \boldsymbol{V}_2 \bigg) \\ \boldsymbol{I}_2 &= Y_{21} \boldsymbol{V}_1 + Y_{22} \boldsymbol{V}_2 + Y_{23} \bigg(-\frac{Y_{31}}{Y_{33}} \, \boldsymbol{V}_1 - \frac{Y_{32}}{Y_{33}} \, \boldsymbol{V}_2 \bigg) \\ & \qquad \qquad \boldsymbol{V}_3 = -\frac{Y_{31}}{Y_{33}} \, \boldsymbol{V}_1 - \frac{Y_{32}}{Y_{33}} \, \boldsymbol{V}_2 \bigg) \\ & \qquad \qquad \boldsymbol{V}_3 = -\frac{Y_{31}}{Y_{33}} \, \boldsymbol{V}_1 - \frac{Y_{32}}{Y_{33}} \, \boldsymbol{V}_2 \bigg) \end{split}$$

Network Reduction

3. collect terms into a new 2 x 2 matrix

$$\mathbf{I}_{1} = \mathbf{Y}_{11}\mathbf{V}_{1} + \mathbf{Y}_{12}\mathbf{V}_{2} + \mathbf{Y}_{13} \left(-\frac{\mathbf{Y}_{31}}{\mathbf{Y}_{32}}\mathbf{V}_{1} - \frac{\mathbf{Y}_{32}}{\mathbf{Y}_{33}}\mathbf{V}_{2} \right)$$

$$\begin{split} \boldsymbol{I}_1 &= \boldsymbol{Y}_{11} \boldsymbol{V}_1 + \boldsymbol{Y}_{12} \boldsymbol{V}_2 + \boldsymbol{Y}_{13} \left(-\frac{\boldsymbol{Y}_{31}}{\boldsymbol{V}_3} \, \boldsymbol{V}_1 - \frac{\boldsymbol{Y}_{32}}{\boldsymbol{V}_3} \, \boldsymbol{V}_2 \right) \\ \boldsymbol{I}_2 &= \boldsymbol{Y}_{21} \boldsymbol{V}_1 + \boldsymbol{Y}_{22} \boldsymbol{V}_2 + \boldsymbol{Y}_{23} \left(-\frac{\boldsymbol{Y}_{31}}{\boldsymbol{V}_3} \, \boldsymbol{V}_1 - \frac{\boldsymbol{Y}_{32}}{\boldsymbol{V}_3} \, \boldsymbol{V}_2 \right) \end{split}$$

$$\begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} \mathbf{Y}_{11} - \frac{\mathbf{Y}_{13}\mathbf{Y}_{31}}{\mathbf{Y}_{33}} \end{pmatrix} \begin{pmatrix} \mathbf{Y}_{12} - \frac{\mathbf{Y}_{13}\mathbf{Y}_{32}}{\mathbf{Y}_{33}} \end{pmatrix} \\ \begin{pmatrix} \mathbf{Y}_{21} - \frac{\mathbf{Y}_{23}\mathbf{Y}_{31}}{\mathbf{Y}_{33}} \end{pmatrix} \begin{pmatrix} \mathbf{Y}_{22} - \frac{\mathbf{Y}_{23}\mathbf{Y}_{32}}{\mathbf{Y}_{33}} \end{pmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$$