

Example

- Consider three, single-phase transformers. The transformers have the following specifications: • 720VA, 360/120V, R_H = 18.9 Ω , X_H = 21.6 Ω , R_L = 2.1 Ω , X_L = 2.4 Ω , R_{cH} = 8.64k Ω , X_{mH} = 6.84k Ω
- Draw the per-phase equivalent circuit if the transformers are connected as $\Delta \Delta$
- What are the nominal line voltages on each side of the transformer?

Summary

- Y-Y, Delta-Delta transformers result in magnitude changes of k = n from primary to secondary
 No phase shifting occurs
- Y-Y transformers grant access to neutral point, which is usually grounded to prevent distortion
- Delta-Delta transformers have no neutral point, but are less prone to distortion
- Per phase analysis can be used on Y-Y, Delta-Delta transformers
 - Ensure impedances and voltages are properly converted

Dr. Louie

21

19