

Introduction

• We want to determine the complex power (or P, Q) flowing out of generators and through transmission lines

• Most utility-scale power plants feature synchronous generators

• |V| controlled by exciter, which influences Q

• δ (power angle) controlled by prime mover, which influences P

Power Transmission-Short Line

- Magnitudes of V₁ and V₂ are controlled by exciters of the generators and are fairly constant
- θ_{12} can be increased by increasing the mechanical power of Gen. 1 and/or by decreasing the mechanical power of Gen. 2 (recall power angle in ECEGR 450)

$$\boldsymbol{S}_{12} \equiv \frac{\left|\boldsymbol{V}_{1}\right|^{2}}{\left|\boldsymbol{Z}\right|}\,e^{j\angle\boldsymbol{Z}} - \frac{\left|\boldsymbol{V}_{1}\right|\left|\boldsymbol{V}_{2}\right|}{\left|\boldsymbol{Z}\right|}\,e^{j\angle\boldsymbol{Z}}e^{j\theta_{12}}$$

$$\boldsymbol{S}_{21} = \frac{\left|\boldsymbol{V}_{2}\right|^{2}}{\left|\boldsymbol{Z}\right|} e^{j \angle Z} - \frac{\left|\boldsymbol{V}_{2}\right|\left|\boldsymbol{V}_{1}\right|}{\left|\boldsymbol{Z}\right|} e^{j \angle Z} e^{-j\theta_{12}}$$

lenry Louie

Power Transmission-Short Line

- Observations
 - circles do not intersect if voltage magnitudes are not equal
 - as θ_{12} increases from 0, active power sent and received increases
 - there is a maximum amount of real power sent
 - $\theta_{12} = 180^{\circ} \angle Z$
 - and received

$$\theta_{12} = \angle Z$$

Most transmission lines have small resistance compared to inductance

y Louie

13

Power Transmission-Short Line

• Assume lossless line (R = 0)

$$P_{12} = -P_{21} = \frac{\left| \textbf{V}_1 \right| \left| \textbf{V}_2 \right|}{X_L} \underbrace{sin \theta_{12}} \quad \text{reactance of the line}$$

$$P_{12} = -P_{21} = \frac{|\mathbf{V}_1||\mathbf{V}_2|}{X_L} \sin \theta_{12} \quad \text{maximum power transfer: } \frac{|\mathbf{V}_1||\mathbf{V}_2|}{X_L}$$

$$Q_{12} = \frac{{{{\left| {{\bm{V}_1}} \right|}^2}}}{{{X_L}}} - \frac{{{{\left| {{\bm{V}_1}} \right|} \right|}{{X_L}}}}{{{X_L}}}\cos {\theta _{12}}$$

We will derive these expressions later

 $Q_{21} = \frac{\left| \bm{V}_{2} \right|^{2}}{X_{L}} - \frac{\left| \bm{V}_{1} \right| \left| \bm{V}_{2} \right|}{X_{L}} \cos \theta_{12}$

Louie

Power Transmission-Short Line

- Under normal operating conditions: $|\theta_{\scriptscriptstyle 12}| < 10^\circ$
- Approximating

$$\begin{split} & \sin\theta_{\scriptscriptstyle 12} \approx \theta_{\scriptscriptstyle 12} \\ & \cos\theta_{\scriptscriptstyle 12} \approx 1 \end{split} \quad \text{in radians} \quad \label{eq:theta_sigma}$$

· Results in

$$P_{12} = \frac{\left| \textbf{V}_1 \right| \left| \textbf{V}_2 \right|}{X_L} \sin \theta_{12} \approx \frac{\left| \textbf{V}_1 \right| \left| \textbf{V}_2 \right|}{X_L} \theta_{12} \quad \text{P is sensitive to } \theta_{12}$$

$$Q_{12} \approx \frac{\left|\boldsymbol{V}_{1}\right|^{2}}{X_{L}} - \frac{\left|\boldsymbol{V}_{1}\right|\left|\boldsymbol{V}_{2}\right|}{X_{L}} \quad Q \text{ is sensitive to voltage magnitude}$$

Dr. Henry Louie

16

3

Surge Impedance Loading (SIL)

• A lossless line terminated in its characteristic impedance (**Z**_c) is said to be Surge Impedance Loaded (SIL)

• Under these conditions:

• |**V**₁| = |**V**₂|

• |**I**₁| = |**I**₂|

• The transmitted power is P_{SIL} = |**V**₁|²/**Z**_c

Surge Impedance Loading

- See
 - SIL_Movie.mat $(Z_L = Z_C)$
 - SIL_Movie_2.mat (Z_L = 0.5Z_C)
 - SIL_Movie_3.mat (Z_L = 100Z_C)

Stability Limits

- Increasing θ_{12} increases the power flow across the line
- · For lossless lines, maximum power transmission occurs when $\theta_{12} = 90^{\circ}$

$$P_{12} = \frac{\left|\mathbf{V}_{1}\right|\left|\mathbf{V}_{2}\right|}{X_{1}}\sin\theta_{12}$$

Stability Limits

- It is desired to limit $|\theta_{12}|$ for stability reasons
- · Consider a lossless long transmission line

• Transmitted power is
$$\mathbf{S}_{12} = \frac{\mathbf{Y}^{1*}}{2} |\mathbf{V}_1|^2 + \frac{|\mathbf{V}_1|^2}{\mathbf{Z}^*} - \frac{|\mathbf{V}_1||\mathbf{V}_2|}{\mathbf{Z}^*} e^{j\theta_{12}}$$

- With lossless assumptions $\mathbf{Z}' = \mathbf{Z}_c \sinh(\beta X) = j\mathbf{Z}_c \sin(\beta X) \qquad \mathbf{Y}' = \mathbf{Y} \frac{\tanh(\gamma X/2)}{\gamma X/2} = j\omega C \frac{\tanh(\beta X/2)}{\beta X/2}$
- Real power transmitted:

$$Re\left\{ \boldsymbol{S}_{12} \right\} = Re\left\{ \frac{\boldsymbol{Y}}{2} |\boldsymbol{V}_{1}|^{2} + \frac{|\boldsymbol{V}_{1}|^{2}}{2} - \frac{|\boldsymbol{V}_{1}||\boldsymbol{V}_{2}|}{2} e^{j\theta_{12}} \right\}$$

Stability Limits

Via Euler's Identity and assuming voltage magnitude at each end of the line are equal:

$$Re\left\{\boldsymbol{S}_{12}\right\} = Re\left\{\frac{\left|\boldsymbol{V}_{1}\right|\left|\boldsymbol{V}_{2}\right|}{\boldsymbol{Z}^{\star}}e^{i\theta_{12}}\right\} = P_{12} = \frac{\left|\boldsymbol{V}_{1}\right|^{2}}{\boldsymbol{Z}_{c}}\frac{sin(\theta_{12})}{sin(\beta X)}$$

• From the SIL definition:

$$P_{12} = P_{SIL} \frac{\sin(\theta_{12})}{\sin(\beta X)}$$

- Limiting θ_{12} , limits maximum power transferred
- For a fixed θ_{12} , as length increases, maximum power transfer decreases
- For very long lines with $\beta x = \pi/2$, P_{SIL} cannot be exceed

41

