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• Batteries 

• Lead-Acid Batteries 

• Battery Specifications 

• Battery Charge Controllers 

• Inverters 
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Batteries 

   Incorporation of a battery is common for stand 
alone systems 
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Batteries 

• Store electrical energy as chemical energy 

• Nominally 6 V, 12 V or 24 V 

 series combinations used to achieve higher 
voltages 

• Common types: 

 lead-acid 

 nickel-cadium 

 several others 
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Lead-Acid Batteries 

• Mature technology (invented in 1859 by Plante) 

• Very common in photovoltaic systems 

• Advantages: 
 Low cost ($0.15 to $0.50 per Wh) 

 High power-to-weight ratio 

 Low self-discharge 

 Good low and high temperature performance 
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Lead-Acid Batteries 

• Disadvantages 
 Heavy 

 Low energy-to-weight ratio 

 Slow charge rate  

 Limited cycle life (<500) 

 Less durable than other batteries 

 Safety hazard (sulfuric acid) 

 Environmental hazard 
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Lead-Acid Batteries 
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Lead-Acid Batteries 

• From Chemistry class: 

An Anode is the electrode through which positive 
electric current flows into… 

(designation follows function not structure of device) 

• anode and cathode switch terminals based on 
charging or discharging 
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Lead-Acid Batteries 

• Convention is to designate the positive plate 
(electrode) the anode (charging) 

• We will use this convention, though not 
technically correct 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 

• Discharging (electrons flow into positive) 

 Anode 

    

 Cathode 
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Lead-Acid Batteries 

• Result: 

 Cathode and Anode become lead sulfate 

 Acid is diluted by water 
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Lead-Acid Batteries 

• Prolonged time in a discharged state results in 
sulfation 

 Lead sulfate on the negative terminal crystalizes 

 Lowers charge acceptance 

 Increases resistance 

• Sulfation may be permanent—it is harder to 
remove the longer it has a low state of charge 

• Avoid leaving batteries in low state of charge 
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Lead-Acid Batteries 

• Charging (electrons flow into anode) 

• Reactions are simply in reverse 

 Anode 

    

 Cathode 

 

• Total Reaction: 

 

 

Dr. Louie 24 

2

4 2 2 4PbSO 2H O PbO SO 4H 2e      

2

4 4PbSO 2e Pb SO   

2 2 4 4 2

4 2 2 2 4

PbO Pb 2H SO 2PbSO 2H O

2PbSO 2H O PbO Pb 2H SO

   

    (charge) 

(discharge) 



Lead-Acid Batteries 
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Lead-Acid Batteries 
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Lead-Acid Batteries 
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Battery Model 

• Simple battery model: Thevenin equivalent voltage 
source 

 RB small < 1 Ohm 

 RB varies with state of charge (SOC) 

 Less electrolyte, greater resistance 

• High charge/discharge current increases losses in RB 

 Less meaningful energy into/out of battery 

 Heat generated affects chemical reactions (speeds 
them up) 
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• Test data from 12V, 
105Ah deep cycle 
battery (ECE 12.1) 

• What is RB? 

 ~0.096 Ohms 
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Battery Model 

Dr. Louie 30 

0 2 4 6 8 10
12

12.5

13

13.5

14

Charge Current (A)

T
e
rm

in
a
l 
V

o
lt
a
g
e
 (

V
)

increasing  
charge current 

decreasing  
charge current 



Lead-Acid Batteries 

• Voltage between cells for Lead-Acid batteries: 
~2.12 V 

• Cells are series connected for higher voltage 

 12V nominal battery: six cells in series (~12.6V) 

 6V nominal battery: three cells in series (~6.3V) 

 etc 
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Battery Specifications 

• Important technical considerations: 

 capacity 

 cycling 

 depth of charge 

 efficiency 

 temperature effects 

 other electrical characteristics 

 mechanical durability 
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Battery Specifications 

• Battery specification challenges: 

 Non-linear device 

 Temperature dependent 

 Time dependent (degrade over time) 

 Memory (previous usage affects future 
performance) 
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Battery Specifications: Voltage 

• Nominal Voltage: open circuit terminal voltage 
(V) 

 usually within a few volts of the nominal voltage 

 6, 12, 24, etc 
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Battery Specifications: Capacity 

• Capacity: energy content of battery in Amp-
Hours (Ah) 

 Ah x nominal voltage = Wh 

• Important caveat 

 Capacity is a function of charge or discharge 
current (among other factors) 

 Slower discharge: more energy extracted from 
battery 

 Slower charge: more energy added to battery 
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Exercise 

A 17Ah, 12V battery contains how many Wh of 
energy? 

A. 170 Wh 

B. 204 Wh 

C. 208 Wh 

D. Cannot be determined 
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Exercise 

A 17Ah, 12V battery contains how many Wh of 
energy? 

A. 170 Wh 

B. 204 Wh 

C. 208 Wh 

D. Cannot be determined 
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17 * 12 = 204Wh 



Battery Specifications: C-Rate 

• Important concept “C-Rate” 

 Charge rate 

 Indicates the current (Amp) value corresponding to 
a provided capacity rating 
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Battery Specifications: C-Rate 

• Example: a 1.5V battery is rated at 3Ah at 1C 

 Interpretation: the battery can supply 3 x 1.5 = 
4.5 Wh if discharged at a constant rate of (3 x 1) = 
3 Amps 

 

• Example: a 12V battery is rated at 7.2Ah at 
0.05C 

 Interpretation: the battery can supply 7.2 x 12 = 
86.4 Wh if discharged at a constant rate of (7.2 x 
0.05) = 0.36 Amps 

 

  

 

Dr. Louie 39 



Example 

• A 12V battery is rated at 105Ah at 0.05C. How 
many Watt-hours of energy can be supplied by 
the battery if it is discharged at 0.05C?  

    

   What is the 0.05C discharge rate in Amps? 

 

   If the battery is discharged at 10 A, will more or 
less than 105Ah be available? 

Dr. Louie 40 



Example 

• A 12V battery is rated at 105Ah at 0.05C. How 
many Watt-hours of energy can be supplied by 
the battery if it is discharged at 0.05C?  

    12 x 105 = 1.26 kWh 

   What is the 0.05C discharge rate in Amps? 

    105 x 0.05 = 5.25 A 

   If the battery is discharged at 10 A, will more or 
less than 105Ah be available? 

 less, since 10 > 5.25 
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Battery Specifications: C-Rate 

• Convention:  

 lead-acid battery capacity provided at the 0.05C 
(or 20-hour) rate 

 Small portable batteries provided at the 1C (or 1 
hour) rate 

 

• Default assumption for this class: capacities are 
referenced to 0.05C  

Dr. Louie 42 



Battery Specifications 
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Battery Specifications 
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Batteries 
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Batteries 

• Cycling: charge and discharge cycles  

 Shortens battery life 

 PV applications cycle at least once per day 

• Charge depth (amount of total energy that can 
be discharged without damage) 

 25% automotive application 

 80% PV applications, golf carts, marine vehicles 

 

Dr. Louie 46 



Batteries 
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Batteries 

• Other parameters of interest 

• Efficiency 

 95% charge 

 95% discharge 

 approx 90% roundtrip 

• Temperature effect 

 higher temperature increases charge capability 

 higher temperature decreases life 

• Internal resistance (for lead-acid on the order of 
0.050 W) 

Dr. Louie 48 



Energy Storage 
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Batteries 
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No. of 
Cells 

Nominal 
Voltage 

Fully 
Charged 

Float 
Voltage 

Fully 
Discharged 

Float Voltage 

Discharge 
Voltage at 

C/20 

Charge 
Voltage at 

C/5 

1 2 2.15 1.9 2.0-1.7 2.1-2.30 

6 12 12.9 11.4 12-10.2 12.6-13.8 

12 24 25.8 22.8 24-20.4 25.2-27.6 

float voltage: open circuit battery voltage 

source: xtronics.com 



Exercise 

You find a 12V car battery and measure it’s 
terminal voltage to find that it reads 12.1V. The 
battery is: 

 

A. Fully charged (100% state of charge) 

B. Undercharged (<100% state of charge) 

C. Overcharged (>100% state of charge) 

Dr. Louie 51 



Exercise 

You find a 12V car battery and measure it’s 
terminal voltage to find that it reads 12.1V. The 
battery is: 

 

A. Fully charged (100% state of charge) 

B. Undercharged (<100% state of charge) 

C. Overcharged (>100% state of charge) 
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A fully charged lead acid 12V should read approximately: 
6*2.15 = 12.9V 



Exercise 

The measured voltage on a nominal 24V battery is 
18V. The battery has approximately 75% of it’s 
energy remaining. 

A. True 

B. False 
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Exercise 

The measured voltage on a nominal 24V battery is 
18V. The battery has approximately 75% of it’s 
energy remaining. 

A. True 

B. False 
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This battery is effectively “dead”. 24V nominal systems 
should have voltages approximately between 22.8 and 26 V 



Battery Charging 

• If directly connected to the battery, the battery 
voltage sets the operating point of the PV module 

 Often reasonably close to the MPP 

 MPPT can also be used 
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Battery Charging 
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Battery Charging 

• What happens at night? 

 IL = 0 

 Diode can be forward biased  

• depends on number of cells in series in the module 

 Battery discharges through PV 

 How can we prevent this? 
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Battery Charging 

• Add a blocking diode 

• Less efficient operation during charging 

 Power loss due to diode voltage drop 

• Prevents discharging when Vm < VB 
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Battery Charging Control 

• Control considerations:  

 prevent overcharging battery 

 prevent cycling 

 prevent excessive discharge 

 maximize power output of PV 

 prevent battery discharge through PV array 
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Battery Charging Application 

• Blocking diode 

 self-regulated design 

 prevents battery discharge under low illumination 

 power is dissipated during charge operation 

 does not prevent overcharging of the battery 

 not recommended for most systems 
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Battery Charging Application 

• Improved design: series regulator 

 switching MOSFET 

 close switch when battery needs to be charged 

 open switch when battery is sufficiently charged 

 prevents battery discharge through the PV 

 low power loss 

 requires logic circuit 
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Battery Charging Application 

• Now add a dc load 
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Battery Charging Application 

• We often want to disconnect the load to avoid 
deeply discharging the battery 

• Also want to avoid cycling the battery 

• For example: 

 If Vb < 11.5 V, then disconnect the load (low 
voltage disconnect (LVD) 

 Reconnect after Vb > 12.6 V 
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Battery Charging 
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Grid Connected System 

• Now add an ac load 

 ac/dc converter required 
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Inverter 

• Power MOSFETs or SCRs used as switches 

• Full-bridge inverter 

• Square wave inverter switching pairs 

 Q1, Q3 

 Q2, Q4 

• To avoid a dc offset, duty ratio of each switch = 0.50 
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Inverter 

• When Q1 = Q3 = 1 

 Q2 = Q4 = 0 

• Positive voltage applied to load 

• Positive current flows 
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Inverter 

• When Q2 = Q4 = 1 

 Q1 = Q3 = 0 

• Negative voltage applied to load 

• Negative current flows 
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Inverter 

Dr. Louie 69 

Limited in  
amplitude 



Inverter 
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Squarewave Inverter 
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Squarewave Inverter 
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Inverter 

• MPPT can be used between PV and inverter 

• Voltage can be stepped up to 120 Vac using a 
transformer 

• Some ac loads can handle “dirty” power, many 
cannot 

• Full bridge inverter output may be filtered to 
better approximate a sine wave 

 Significant harmonics are close to fundamental 

 Large capacitor is required  

• A better approach is to use pulse width 
modulation to control the switches 
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PWM Inverter 

• Switching frequency should be much greater 
(4kHz - 10kHz) than fundamental frequency (60 
Hz or 50 Hz) 

 

• Basic idea: vary the duty ratios within each 
switching period to replicate a sine wave 
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PWM Inverter 
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PWM Inverter 
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PWM Inverter 

• Use a low-pass filter to remove components at 
switching frequency 
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PWM Inverter 
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PWM Inverter 
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PWM Inverter 
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PWM Inverter 
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Grid Connected System 

• Now connect to the grid 
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Inverters 

• Inverters tied to the grid require special 
performance characteristics 

 Must be able to synchronize with the grid 

 Must disconnect if the grid losses power 

 Must have acceptable power quality 
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