10-Combinational Circuit Design Text: Unit 8

ECEGR/ISSC 201
Digital Operations and Computations
Winter 2011

Limited Fan-in

- Practical logic gates are limited by the number of inputs they can handle (fan-in)
- Similar constraints on the number of gates the output can be connected to (fan-out)
- Solution to limited fan-in: factor into a multi-level expression
- Solution to limited fan-out: use buffers (discussed in the next lecture)

ouie 3

Limited Fan-in

- Consider F(A, B, C, D) = Σ m(0, 3, 4, 5, 8, 9, 10, 14, 15)
- Design using NOR gates

CD	00	01	11	10
00	1	1	0	1
01	0	1	0	1
11	1	0	1	0
10	0	0	1	1

Limited Fan-in

- Recall NOR-NOR requires starting with PoS form
- F' = A'B'C'D + AB'CD + ABC' + A'BC + A'CD'

\AB				
CD	00	01	11	10
00	1	1	0	1
01	0	1	0	1
11	1	0	1	0
10	0		1	1

: Louie 5

Limited Fan-in

F' = A'B'C'D + AB'CD + ABC' + A'BC + A'CD' F = (A'B'C'D + AB'CD + ABC' + A'BC + A'CD')' F=(A+B+C+D')(A'+B+C'+D')(A'+B'+C)(A+B'+C') (A+C'+D) Next F = {(F)'}' F={(A+B+C+D')'+(A'+B+C'+D')'+(A'+B'+C)'+(A+B'+C')'+(A+C'+D)'}'

Dr. Louie

Gate Delays

Output changes do not occur instantaneously
Propagation delay, ϵ On the order of 1 nanosecond
Propagation delay is not symmetric
0 to 1 ϵ_1 1 to 0 ϵ_2 In multi-level circuits, the delay can be important

