

Example

- Marigold conductor has dc resistance of 0.01558 Ohms per 1000 ft at 20° C
- spiral has increased length by 2 %
- resistivity is 17.0 (Ωxcmil/ft)
- cross section is 1,113,000 cmil
- T = 228° C
- If the ac resistance is 0.0956 Ohms/mile at 50° C, what is the percentage of resistance increase caused by the skin effect?

Henry Louie

Example

Step 1: find the DC resistance for 1000 ft of cable and include spiraling

$$R_{\text{dc}} = \frac{\rho I}{A} \ \Omega$$

Dr. Henry Louie

20

Example

Step 1: find the DC resistance for 1000 ft of cable and include spiraling

$$R_{\text{dc}} = \frac{\rho I}{A} ~\Omega$$

$$R_{_0} = \frac{17.0\ 1000}{1113\ 10^3}\ 1.02\ = 0.01558\ \Omega$$

Note: tabulated value accounts for spiraling

Example

Step 2: find resistance at 50° C

$$\frac{R_{_{2}}}{R_{_{1}}} = \frac{T + t_{_{2}}}{T + t_{_{1}}}$$

B. II.....

2:

Example

Step 2: find resistance at 50° C

$$\frac{R_2}{R_1} = \frac{T + t_2}{T + t_1}$$

 $R_{_1}=0.01558\;\Omega$

$$R_2 = 0.01558 \frac{228 + 50}{228 + 20} = 0.01746 \Omega$$

Dr. Henry Louie

23

Example

Step 3: compute the ratio of resistances for one mile of conductor (hint: there are 5280 ft per mile)

Dr. Henry Louie

24

