04-Electric Power

ECEGR 452 Renewable Energy Systems

Overview

- Review of Electric Circuits
- Phasor Representation
- Electrical Power
- Power Factor

Introduction

- Majority of the electrical energy produced by renewable resources is ultimately transmitted and consumed within the interconnected power system
- Integration of renewable resources into the power system is a challenge
- We need to understand basics of electric power

Based on 5-min readings from the BPA SCADA system for points 45583, 79687 Balancing Authority Load in Red, Wind Generation in Blue; Installed Wind Capacity=1489 MW BPA Technical Operations: Roy Ellis (rcellis@bpa.gov)

- Voltage in AC circuits:
 - $v(t) = V_{max}cos(\omega t + \theta_V)$
 - V_{max}: voltage amplitude (Volts)
 - ω: frequency (rad/sec)
 - θ_{V} : phase angle of the voltage (rad)
- Current in AC circuits:
 - $i(t) = I_{max}cos(\omega t + \theta_i)$
 - I_{max}: amplitude (Amperes)
 - θ_i : phase angle of the voltage (rad)

• Conversion of radians (θ_{rad}) to degrees (θ_{deg})

$$\theta_{\mathsf{deg}} = \theta_{\mathsf{rad}} \, \frac{180^{\circ}}{\pi}$$

Conversion of degrees to radians

$$\theta_{\mathsf{rad}} = \theta_{\mathsf{deg}} \, \frac{\pi}{180^\circ}$$

- Frequency in North American power systems is 60 Hz
 - f: frequency (Hertz)
 - $\omega = 2\pi f \sim 377 \text{ rad/sec}$
- Other parts of the world 50 Hz is common
- We assume 60 Hz unless otherwise noted
- Voltage waveform is set as a reference, so $\theta_V = 0^\circ$

Phasor Transform

- Shorthand for writing sinusoidal functions
- Used for steady-state calculations
- Contains amplitude and phase angle information
 - Assumed that frequency is known
- Relies on Euler's Identity

$$\mathbf{v}(\mathbf{t}) = \mathbf{v}_{\max} \cos\left(\omega \mathbf{t} + \theta_{\mathbf{v}}\right) \longrightarrow \begin{array}{c} \text{Phasor} \\ \text{Transform} \end{array} \xrightarrow{\mathbf{V}_{\max}} \underline{\langle \theta_{\mathbf{v}} \rangle} \\ \frac{\sqrt{2}}{\sqrt{2}} \leq \theta_{\mathbf{v}} \end{array}$$

Note: division by square root of 2 is used in power system analysis ("effective phasor")

Example

- Write the phasor representation of v₁(t) = 1.41cos(377t + 0)
- Write the phasor representation of $v_2(t) = 2.12 \cos(377t + 45)$
- Write the phasor representation of v₃(t) = 1.41cos(t + 0)

Example

- write the phasor representation of v₁(t) = 1.41cos(377t + 0)
- write the phasor representation of $v_2(t) = 2.12 \cos(377t + 45)$
- write the phasor representation of v₃(t) = 1.41cos(t+0)

Notation

- Lecture slides use bold uppercase variables (e.g.
 V, I) for phasors and other vectors
- Capital letters (e.g. V, I) or absolute values of phasors (|V|, |I|) are used to indicate the magnitude of the phasor
 V = V / θ
- Lowercase variables (e.g. v, i) are preferred to represent scalars not associated with phasors and vectors
 - Notable exceptions P, Q for real and imaginary power

Phasor Transform

• We use the effective phasor because

 $\mathsf{P} = \mathsf{v}_{\mathsf{rms}} \mathsf{i}_{\mathsf{rms}} \cos(\phi)$

- So we can then write $P = VI \cos(\phi)$
- Unless otherwise specified, <u>assume that voltages</u> and currents are given in RMS and all phasors are <u>"effective phasors"</u>
- Also note:

$$e^{-j90^{\circ}} = \cos(-90^{\circ}) + j\sin(-90^{\circ}) = j\sin(-90^{\circ}) = -j$$

where j is the imaginary operator $j = \sqrt{-1}$

Phasor Transform

- Different expressions of a voltage phasor $\frac{v_{max}}{\sqrt{2}} \angle \theta_v = V_{rms} \angle \theta_v = |\mathbf{V}| \angle \theta_v = V \angle \theta_v = V e^{j\theta_v}$
- Current: $\frac{I_{max}}{\sqrt{2}} \angle \theta_{I} = I_{rms} \angle \theta_{I} = |\mathbf{I}| \angle \theta_{I} = I \angle \theta_{I} = Ie^{j\theta_{I}}$
- Impedance:

$$| \mathbf{Z} | \angle \theta_z = \mathbf{Z} \angle \theta_z = \mathbf{Z} \mathbf{e}^{j\theta_z}$$

• Define: $\phi \triangleq \theta_v - \theta_i$ (remember this!)

Phasors

Phasors have a direct geometric interpretation

Polar form

Phasors

- Another way of specifying phasors is in rectangular form
 - Let the Y-axis be the imaginary (j) axis
 - Let the X-axis be the real axis
- Resolving into real and imaginary components

$$V_1 = 1 \angle 45^\circ = 0.707 + j0.707$$

$$\mathbf{V}_2 = 3 \angle 0^\circ = 3 + \mathbf{j}0$$

Addition of Phasors

- Addition and subtraction of phasors are simple using rectangular form
 - Simply add/subtract the real values and add/subtract the imaginary values

 $\mathbf{V}_3 = \mathbf{V}_1 + \mathbf{V}_2 = 3.707 + \mathbf{j}0.707$

Multiplication of Phasors

- Multiplication and division are easier in polar form
 - For multiplication: multiply magnitudes, add angles
 - For division: divide magnitudes, subtract angles

Example

- If $\mathbf{V} = 1 \angle 10^{\circ}$, what is jV?
- A. $1 \angle 10^{\circ}$
- **B.** 1∠100°
- **C.** 1∠190°
- D. 0

Example

If $v = 1 \angle 10^{\circ}$, what is jV? A. $1 \angle 10^{\circ}$ B. $1 \angle 100^{\circ}$ JV = $(1 \angle 90^{\circ})(1 \angle 10^{\circ}) = 1 \angle 100^{\circ}$ C. $1 \angle 190^{\circ}$ D. O

Phasors

- Another way of specifying phasors is in rectangular form
 - Let the Y-axis be the imaginary (j) axis
 - Let the X-axis be the real axis
- Resolving into real and imaginary components

$$V_1 = 1 \angle 45^\circ = 0.707 + j0.707$$

$$\mathbf{V}_2 = 3 \angle 0^\circ = 3 + \mathbf{j}0$$

Phasor Analysis of Resistors

• For resistors

$$\begin{split} & \mathsf{i}(\mathsf{t}) = \mathsf{i}_{\max} \cos(\omega \mathsf{t} + \theta_{\mathsf{i}}) \\ & \mathsf{v}(\mathsf{t}) = \mathsf{i}(\mathsf{t})\mathsf{R} \\ & \mathsf{v}(\mathsf{t}) = \mathsf{R}\mathsf{i}_{\max} \cos(\omega \mathsf{t} + \theta_{\mathsf{i}}) \end{split}$$

• Transforming into phasor form:

Phasor Analysis of Inductors

- For inductors $i(t) = i_{max} \cos(\omega t + \theta_i)$ $v(t) = L \frac{di}{dt}$ $v(t) = -L\omega i_{max} \sin(\omega t + \theta_i) = -L\omega i_{max} \cos(\omega t + \theta_i - 90^\circ)$
- Transforming into phasor form:

$$v(t) = -L\omega i_{max} \cos(\omega t + \theta_i - 90^\circ)$$

=> $V = -L\omega Ie^{j\theta_i}e^{-j90^\circ}$
 $V = jL\omega Ie^{j\theta_i} = jL\omega I$
using $e^{j-90^\circ} = -j$
 (t)

- $\mathbf{V} = \mathbf{j}\omega \mathbf{L}\mathbf{I}$
- Define $X_L = \omega L$ (inductive reactance)
- Therefore
 - $\mathbf{V} = jX_{L}\mathbf{I}$ I lags V by 90 deg.
- A similar derivation for capacitors yields
 - $X_C = 1/(\omega C)$ (capacitive reactance)
 - $\mathbf{V} = -jX_{C}\mathbf{I}$ I leads V by 90 deg.

- We can rewrite Ohm's Law to include complex impedances
- V = IZ
 - Z: complex impedance (Ohms)
 - $\mathbf{Z} = R + jX_L jX_C$ (if in series)
 - $1/\mathbf{Z} = 1/R + j/X_L j/X_C$ (if in parallel)
- Z will have a magnitude and phase associated with it $\textbf{Z}=\textbf{Z} \slash \theta_{z}$

P is also known as Real Power, Active Power, Average Power

 $\mathsf{P} = |\mathbf{V}_{\mathsf{s}}| |\mathbf{I}| \cos(\phi)$

 $\mathsf{P} = \mathsf{Re}\left\{\mathbf{VI}^*\right\}$

* is the complex conjugate operator, it denotes a change in sign of the imaginary part

Conjugation is needed so that the <u>difference</u> in phase between voltage and current is considered, rather than their sum

Let S be the complex power defined as
 S = VI*

then

- $\mathsf{P}=\mathsf{Re}\left\{\boldsymbol{\mathsf{VI}}^*\right\}=\mathsf{Re}\left\{\boldsymbol{\mathsf{S}}\right\}$
- Let Q be the reactive power defined as $Q = Im\{\mathbf{VI}^*\}$
- Then
 Q = Im {**S**}

And therefore:
 S = P + jQ

Q is also known as imaginary power

S is also known as apparent power

- Technically, units of S, Q and P are watts*
- To avoid confusion, alternate units are used in practice
 - S: Volt-Amps (VA)
 - Q: Volt-Amps Reactive (VAR)
- Inductors, capacitors consume/supply reactive power, Q
- S and Q are defined values
 - a meaningful physical interpretation is elusive

*See C. Gross "On VA's, VAR's, and Other Traditions in Electric Power Engineering"

Power Triangle

- Relationships between S, P and Q can be shown graphically
- $\mathbf{S} = P + jQ$

Power Triangle

- Consider $P = |\mathbf{V}| |\mathbf{I}| \cos(\phi)$
- Since $|S| = |VI^*| = |VI| = |V||I|$
- Then $P = |\mathbf{S}| \cos(\phi)$
 - P is the projection of S onto the real axis

- A similar result can be found for Q
 - P = |S|cos(φ)
 - Q = |S|sin(φ)
- Q is the projection of S onto the imaginary axis

Complex Power Cheat Sheet

$$P = \operatorname{Re}\{\mathbf{VI}^*\}$$

$$= \operatorname{Re}\{\mathbf{IZI}^*\} = |\mathbf{I}|^2 \operatorname{Re}\{\mathbf{Z}\}$$

$$P = |\mathbf{I}|^2 \operatorname{R}$$

$$P = |\mathbf{V}| ||\mathbf{I}| \cos \phi$$

$$P = |\mathbf{I}|^2 |\mathbf{Z}| \cos \phi$$

$$Q = \operatorname{Im}\{\mathbf{VI}^*\}$$

$$Q = |\mathbf{I}|^2 X$$

$$Q = |\mathbf{V}| ||\mathbf{I}| \sin \phi$$

$$Q = |\mathbf{I}|^2 |\mathbf{Z}| \sin \phi$$

$$\mathbf{S} = \mathbf{P} + \mathbf{j}\mathbf{Q}$$
$$\phi = \tan^{-1}(\mathbf{Q}/\mathbf{P})$$
$$\cos \phi = \frac{\mathbf{P}}{\sqrt{\mathbf{P}^2 + \mathbf{Q}^2}}$$

Power Factor

- Power factor is non-negative
- $\cos(\phi) = \cos(-\phi)$
- Need to distinguish between ϕ and $-\phi$

Power Factor

Same power factor

- For example let $\theta_v = 0^\circ$
- Case 1: $\theta_i = 30^{\circ}$
 - Capacitive circuit
 - PF = 0.866 <
- Case 2: $\theta_i = -30^{\circ}$
 - Inductive circuit
 - PF = 0.866

Leading/Lagging Power Factor

Must describe the PF value along with whether the current leads or lags voltage

- Lagging: current lags voltage (inductive)
- Leading: current leads voltage (capacitive)
- Useful mnemonic: ELI the ICE man

Why are Inductive Circuits Lagging?

Recall

$$V = jX_{L}I$$

$$I = V/(jX_{L}) = -jV/X_{L}$$

$$S = VI^{*}$$

for purely inductive circuits

Leading/Lagging Power Factor

- Similar result for capacitive circuits
 - $S = -j|V|^2/X_C$
- Note:
 - the presence of resistance does not affect whether or not a circuit is leading or lagging, but it does affect the magnitude of the power factor
 - circuits with L and C (or L, C and R) must be analyzed before leading or lagging can be determined

- Find the current out of the source, the power out of the source, and power consumed by the resistor assuming:
 - $V_s = 120$ Volts at 60 Hz
 - L = 0.01 Henry
 - R = 10 Ohms

- $V_s = 120$ Volts (RMS) at 60 Hz
- L = 0.01 Henry
 - $jX_L = j\omega L = j(60 \times 2\pi) \times .01 = j3.77$
- R = 10 Ohms

$$\mathbf{Z} = (3.77j + 10) = \sqrt{3.77^2 + 10^2} \angle \tan^{-1} \left(\frac{3.77}{10}\right)$$

Z = 10.69∠20.7°Ω **V**_s = **IZ I** = $\frac{120∠0^{\circ}}{10.69∠20.7^{\circ}}$ = 11.22∠ - 20.7°A

phasor diagram

• Power from the source

 $P = |V_s| |I| \cos(\phi) = (120)(11.22)\cos(20.7^{\circ}) = 1.26 kW$

- Power consumed by the load resistor
 P = I |² R = 11.22² × 10 = 1.26kW
- The inductor does not consume any power P

Summary

S

• P, Q, S related by power triangle

- **S** is a vector, Q and P are scalars
- Resistors associated with P; inductors/capacitors associated with Q