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Overview 

• Review of Electric Circuits 

• Phasor Representation 

• Electrical Power 

• Power Factor 
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Introduction 

• Majority of the electrical energy produced by 
renewable resources is ultimately transmitted and 
consumed within the interconnected power 
system 

 

• Integration of renewable resources into the 
power system is a challenge 

 

• We need to understand basics of electric power 
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Review of Electric Circuits 

• Voltage in AC circuits: 

 v(t) = Vmaxcos(wt + qV) 

• Vmax: voltage amplitude (Volts) 

• w: frequency (rad/sec) 

• qV: phase angle of the voltage (rad) 

 

• Current in AC circuits: 

 i(t) = Imaxcos(wt + qi) 

• Imax: amplitude (Amperes) 

• qi: phase angle of the voltage (rad) 
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Review of Electric Circuits 

amplitude 

phase angle 

 1
1 0 377 0( ) . cosv t t   2

1 5 377 45( ) . cosv t t 
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Review of Electric Circuits 

• Conversion of radians (qrad) to degrees (qdeg) 

 

 

• Conversion of degrees to radians 
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180
rad deg


q  q



180
deg rad


q  q





Review of Electric Circuits 

• Frequency in North American power systems is 60 
Hz 

 f: frequency (Hertz) 

 w = 2f ~ 377 rad/sec 

• Other parts of the world 50 Hz is common 

• We assume 60 Hz unless otherwise noted 

• Voltage waveform is set as a reference, so qV = 0o  
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Phasor Transform 

• Shorthand for writing sinusoidal functions 

• Used for steady-state calculations 

• Contains amplitude and phase angle information 

 Assumed that frequency is known 

• Relies on Euler’s Identity 

Phasor 

Transform 
 max v

v(t) v cos t w  q
2

max
v

V
q
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Note: division by square root of 2  
is used in power system analysis (“effective phasor”) 



Example 

• Write the phasor 
representation of 

  

• Write the phasor 
representation of 

 

• Write the phasor 
representation of 

 

 1
1 41 377 0v (t) . cos t 

 2
2 12 377 45v (t) . cos t 

 3
1 41 0v (t) . cos t 
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Example 

• write the phasor 
representation of 

  

• write the phasor 
representation of 

 

• write the phasor 
representation of 

 

1
1 0 V

solution 

solution 

solution 
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 1
1 41 377 0v (t) . cos t 

 2
2 12 377 45v (t) . cos t 

 3
1 41 0v (t) . cos t 

2
1 5 45. V

3
1 0 V



Notation 

• Lecture slides use bold uppercase variables (e.g. 
V, I) for phasors and other vectors 

• Capital letters (e.g. V, I) or absolute values of 
phasors (|V|, |I|) are used to indicate the 
magnitude of the phasor 

 

• Lowercase variables (e.g. v, i) are preferred to 
represent scalars not associated with phasors and 
vectors 

 Notable exceptions P, Q for real and imaginary 
power 
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V qV



Phasor Transform 

• We use the effective phasor because 

 

 So we can then write 

• Unless otherwise specified, assume that voltages 
and currents are given in RMS and all phasors are 
“effective phasors” 

• Also note: 
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rms rms
P v i cos( ) 

P VIcos( ) 

90 90 90 90j o o oe cos( ) jsin( ) jsin( ) j        

where j is the imaginary operator  1 j



Phasor Transform 

• Different expressions of a voltage phasor 

 

 

• Current: 

 

• Impedance: 

 

• Define: 
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2

vjmax
v rms v v v

v
V =| | V Ve q

q  q q  q V

2

Ijmax
I rms I I I

i
I =| | I Ie q

q  q q  q I

Zj

Z Z
| | Z Ze q

q  q Z

v i
 q  q (remember this!) 



Phasors 

Phasors have a direct geometric interpretation 

 Polar form 
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2
3 0 V

Horizontal is reference 

1
1 45 V

1
45o

V
q 



Phasors 

• Another way of specifying phasors is in 
rectangular form 

 Let the Y-axis be the imaginary (j) axis 

 Let the X-axis be the real axis 

• Resolving into real and imaginary components 
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1

2

1 45 0 707 0 707

3 0 3 0

. j .

j

   

   

V

V

imag 

real 
2

3 0 V

1
1 45 V



Phasors 
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imag 

real 

1 90 j

1 90   j

1 1 0 1 1 180  



Addition of Phasors 

• Addition and subtraction of phasors are simple 
using rectangular form 

 Simply add/subtract the real values and 
add/subtract the imaginary values 
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3 1 2
3 707 0 707. j .   V V V

imag 

real 

3
V

2
V

1
V

Addition is “tip to tail” 
Subtraction is “tail to tip” 



4 1 2

4

1 45 3 0

3 45

( )( )   

 

V V V

V

Multiplication of Phasors 

• Multiplication and division are easier in polar form 

 For multiplication: multiply magnitudes, add angles 

 For division: divide magnitudes, subtract angles 
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add angles 

multiply magnitudes 

imag 

real 

4
V



Example 

If             , what is jV? 

A.  

B. 

C. 

D. 0 
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1 10 V

1 10

1 100

1 190



Example 

If             , what is jV? 

A.  

B. 

C. 

D. 0 
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1 10 V

1 10

1 100

1 190

1 90 1 10 1 100    j ( )( )V



Phasors 

• Another way of specifying phasors is in 
rectangular form 

 Let the Y-axis be the imaginary (j) axis 

 Let the X-axis be the real axis 

• Resolving into real and imaginary components 
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1

2

1 45 0 707 0 707

3 0 3 0

. j .

j

   

   

V

V

imag 

real 
2

3 0 V

1
1 45 V



• For resistors 

 

 
 

 

• Transforming into phasor form: 

 

 w  q



 w  q

max i

max i

i(t) i cos( t )

v(t) i(t)R

v(t) Ri cos( t )

q




ijRIe

R

V

V I

Phasor Analysis of Resistors 
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R v(t) 

i(t) 

+ 

- 

Voltage and current are in phase 



• For inductors 

 

 
 

 

• Transforming into phasor form: 

 

90

max i

o

max i max i

i(t) i cos( t )

di
v(t) L

dt

v(t) L i sin( t ) L i cos( t )

 w  q



  w w  q   w w  q 

90

90
o

i

i

o

max i

j j

j

v(t) L i cos( t )

L Ie e

jL Ie jL

q 

q

  w w  q 

   w

 w  w

V

V I

Phasor Analysis of Inductors 
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L v(t) 

i(t) 

90je j  using + 

- 



Phasor Analysis 

 

• Define XL = wL (inductive reactance) 

• Therefore 

 V = jXLI 

• A similar derivation for capacitors yields 

 XC = 1/(wC)  (capacitive reactance) 

 V = -jXCI 
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j L wV I

I leads V by 90 deg. 

I lags V by 90 deg. 



Phasor Analysis 

• We can rewrite Ohm’s Law to include complex 
impedances  

• V = IZ 

 Z: complex impedance (Ohms) 

• Z = R + jXL - jXC (if in series) 

• 1/Z = 1/R + j/XL - j/XC (if in parallel) 

• Z will have a magnitude and phase associated 
with it  
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z
Z qZ



Complex Power 

   P is also known as Real Power, Active Power, Average Power 
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 
s

*

P | || | cos( )

P Re

 



V I

VI

* is the complex conjugate operator,  
it denotes a change in sign of the imaginary part 
 
Conjugation is needed so that the difference in phase 
between voltage and current is considered, rather  
than their sum 



Complex Power 

• Let S be the complex power defined as 

 

    then  

 

• Let Q be the reactive power defined as  

 

• Then 

 

• And therefore: 
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   

*

*P Re Re



 

S VI

VI S

 

 

*Q Im

Q Im

P jQ





 

VI

S

S

Q is also known as 
imaginary power 

S is also known as 
apparent power 



Complex Power 

• Technically, units of S, Q and P are watts*  

• To avoid confusion, alternate units are used in 
practice 

 S: Volt-Amps (VA) 

 Q: Volt-Amps Reactive (VAR) 

• Inductors, capacitors consume/supply reactive 
power, Q  

• S and Q are defined values 

 a meaningful physical interpretation is elusive 
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*See C. Gross “On VA's, VAR's, and Other Traditions 

in Electric Power Engineering” 



Power Triangle 

• Relationships between S, P and Q can be shown 
graphically 

• S = P + jQ 
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S 

P 

 

real 

imaginary 

Q 
Note: 
P, Q are scalars 
representing the real 
and imaginary parts 
of S 



Power Triangle 

• Consider P = |V||I|cos() 

• Since |S| = |VI*| = |VI| = |V||I| 

• Then P =|S|cos() 

• P is the projection of S onto the real axis 
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S 

P 

 

Q 



Complex Power 

• A similar result can be found for Q 

 P =|S|cos() 

 Q =|S|sin() 

• Q is the projection of S onto the 
imaginary axis 
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Imaginary  
axis 

Real  
axis 

S 

P 

 

Q 



Complex Power Cheat Sheet 
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2

2

2

P Re{ }

   =Re{ } | | Re{ }

P | | R

P | || | cos

P | | | | cos











 

 

VI

IZI I Z

I

V I

I Z

2

2

Q Im{ }

Q | | X

Q | || | sin

Q | | | | sin





 

 

VI

I

V I

I Z

1

2 2

P jQ

Qtan ( )
P

P
cos

P Q



 

 

 


S



Power Factor 

• Power factor is non-negative 

• cos() = cos(–) 

• Need to distinguish between  and – 
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S 

P  

Q 

-Q 

 



Power Factor 

• For example let qv = 0o 

• Case 1: qi = 30o 

 Capacitive circuit 

 PF = 0.866 

• Case 2: qi = -30o 

 Inductive circuit 

 PF = 0.866 

35 Dr. Louie 

Same power factor 



Leading/Lagging Power Factor 

   Must describe the PF value along with whether 
the current leads or lags voltage 

 Lagging: current lags voltage (inductive) 

 Leading: current leads voltage (capacitive) 

 Useful mnemonic: ELI the ICE man 
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V 

I 

S 

P  

Q 

V 

I 

S 

P 

 

Q 

Inductive, lagging, positive  capacitive, leading, negative  



Why are Inductive Circuits Lagging? 

Recall 

 V = jXLI 

 I = V/(jXL) = -jV/XL 

 S = VI* 

 

therefore 

I* = jV*/XL 

S = jVV*/XL = j|V|2/XL 
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V 

I 

angle is always +90 degrees 
for purely inductive circuits 

V 

I* 

S 



Leading/Lagging Power Factor 

• Similar result for capacitive circuits 

 S = -j|V|2/XC 

• Note: 

 the presence of resistance does not affect whether 
or not a circuit is leading or lagging, but it does 
affect the magnitude of the power factor 

 circuits with L and C (or L, C and R) must be 
analyzed before leading or lagging can be 
determined 
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Phasor Analysis 

• Find the current out of the source, the power out 
of the source, and power consumed by the 
resistor assuming: 

 Vs = 120 Volts at 60 Hz 

 L = 0.01 Henry 

 R = 10 Ohms 
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L 

Vs 

I 

R 



Phasor Analysis 

• Vs = 120 Volts (RMS) at 60 Hz  

• L = 0.01 Henry 

 jXL = jwL = j(60 x 2)x.01 = j3.77 

• R = 10 Ohms 
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L 

Vs 

I 

R 



Phasor Analysis 
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2 2 1 3 77
3 77 10 3 77 10

10

10 69 20 7

120 0
11 22 20 7

10 69 20 7

s

.
( . j ) . tan

. .

. . A
. .

  
      

 

  




   



Z

Z

V IZ

I

Vs 

I 

phasor diagram 



Phasor Analysis 

• Power from the source 

 

 

• Power consumed by the load resistor 

 

• The inductor does not consume any power P 
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L 

Vs 

I 

R 

120 11 22 20 7 1 26
s

P | || | cos( ) ( )( . )cos( . ) . kW   V I

2 211 22 10 1 26P | | R . . kW   I



Summary 

• P, Q, S related by power triangle 

 

 

• P has a physical interpretation, Q and S do not 

 

• S is a vector, Q and P are scalars 

 

• Resistors associated with P; inductors/capacitors associated 
with Q 
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S 

P  

Q 


