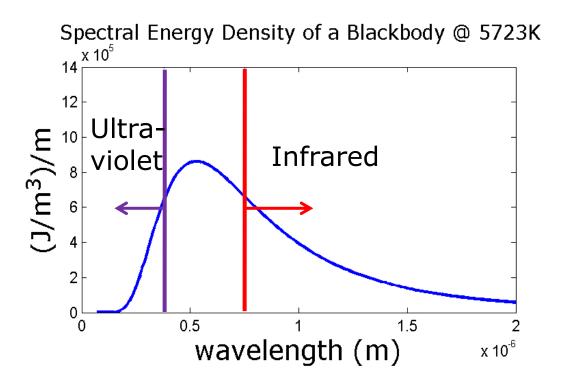
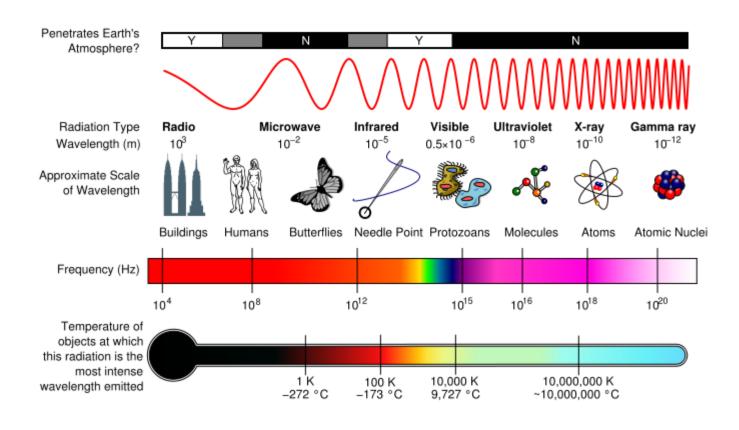
03-Emissions

ECEGR 452 Renewable Energy Systems


Overview

- Solar Spectrum
- Atmospheric Effects
- Greenhouse Gases
- Global Warming
- CO₂ Emissions
- Emissions Calculations
- Other Emissions

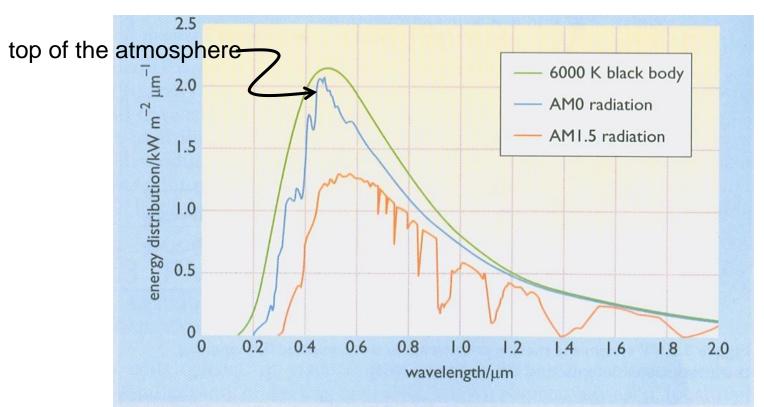
- What is the frequency of solar radiation?
 - Determined by Planck's Law
 - Relates temperature to energy at each frequency



 Energy is distributed across a spectrum of frequencies (or wavelengths)

$$f = \frac{C}{\lambda} \longleftarrow \text{ speed of light}$$
 wavelength

Higher frequency radiation contains more energy



- Earth receives radiation from the sun
 - Wide range of wave lengths: 250-5000 nm
- Atmosphere reflects about 30%
 - Not all wavelengths are reflected equally

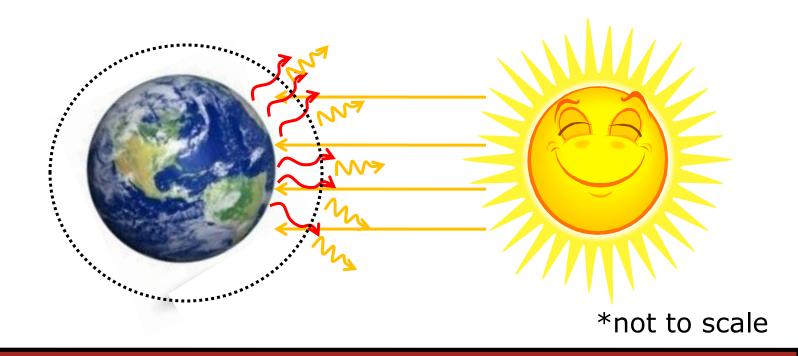
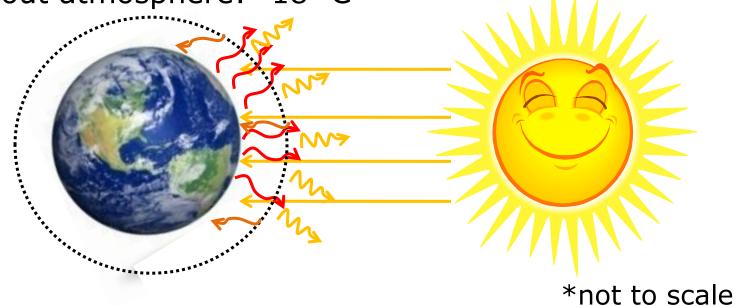


Figure 3.8 The spectral power distributions of solar radiation corresponding to Air Mass 0 and Air Mass 1.5. Also shown is the theoretical spectral power distribution that would be expected, in space, if the sun were a perfect radiator (a 'black body') at 6000 °C

Source: Renewable Energy: Power for a Sustainable Future, G. Boyle

- Earth's surface heats and re-radiates heat back into space
 - Longwave infrared radiation



- Atmosphere blocks some of this radiation from being re-radiated back to space
- Average surface temperature

with atmosphere: 15 °C

without atmosphere: -18 °C

Greenhouse Gases

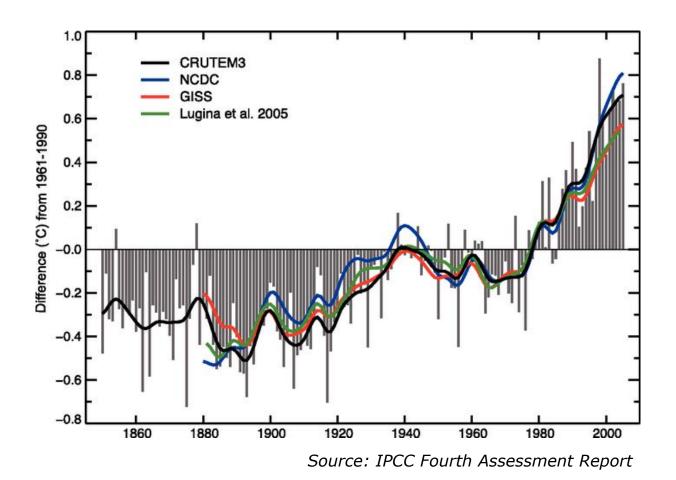
- Greenhouse gases: atmospheric gases that keep the longwave infrared radiation from escaping
- Common Greenhouse gases (GHG)
 - Water vapor (responsible for 60-80% of greenhouse effect)
 - Carbon dioxide (CO₂)
 - Methane
 - N₂O
 - Ozone

Greenhouse Gases

- Current CO₂ concentration ~ 400 ppm (parts per million)
 - increasing
 - 18th Century ~ 280 ppm
- Burning fossil fuels releases previously sequestered (buried) carbon into the atmosphere
 - Concentration of CO₂ increases

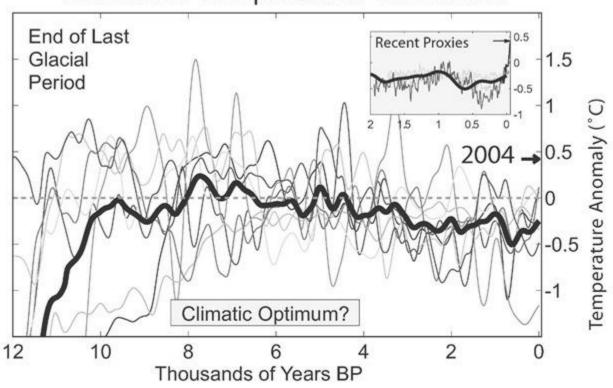
Global Warming

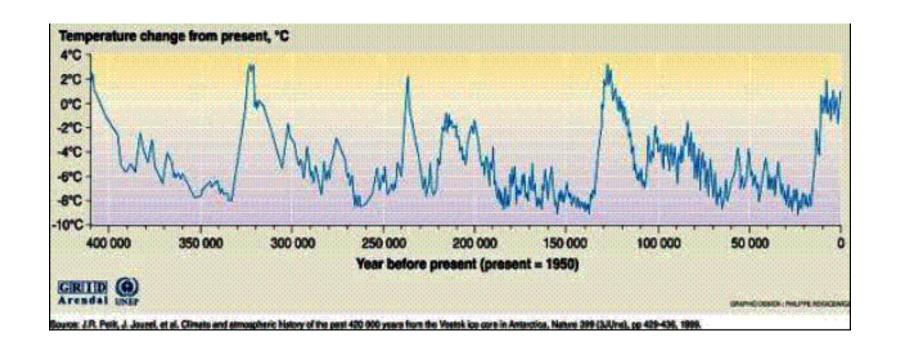
Global warming is a generalization in both space and time used to describe the rising trend in mean global temperature evident in many but not all analyses of near-surface temperature data-Timothy Casey



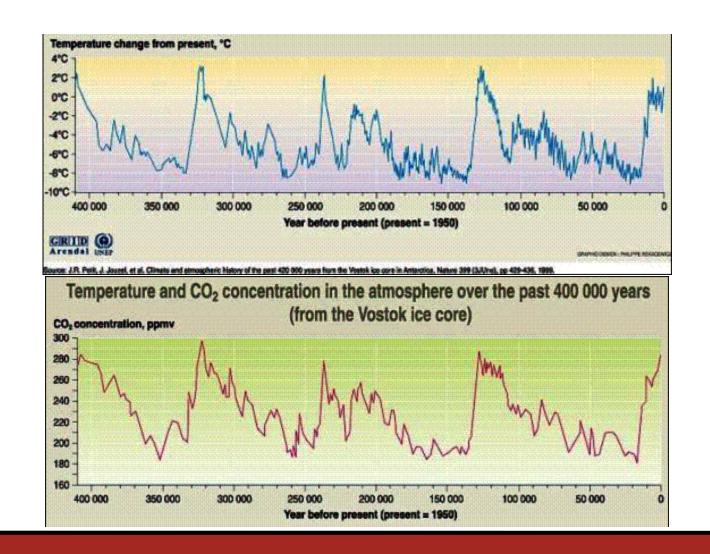
Global Warming

- Politically and scientifically contentious
- Is global warming happening?
 - How do you measure "warming"?
- What are the causes?
 - Anthropogenic?
 - Natural?
- What are the effects?
 - Desertification?
 - Rise in sea level?
 - Warmer in Seattle?
- What should be done?

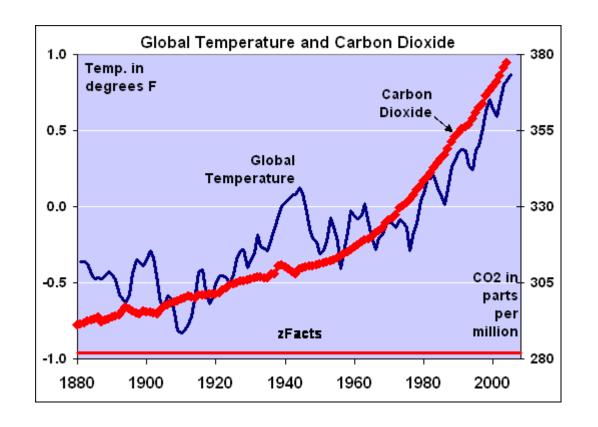

Global Temperature (Recent)


Global Temperature (Holocene)

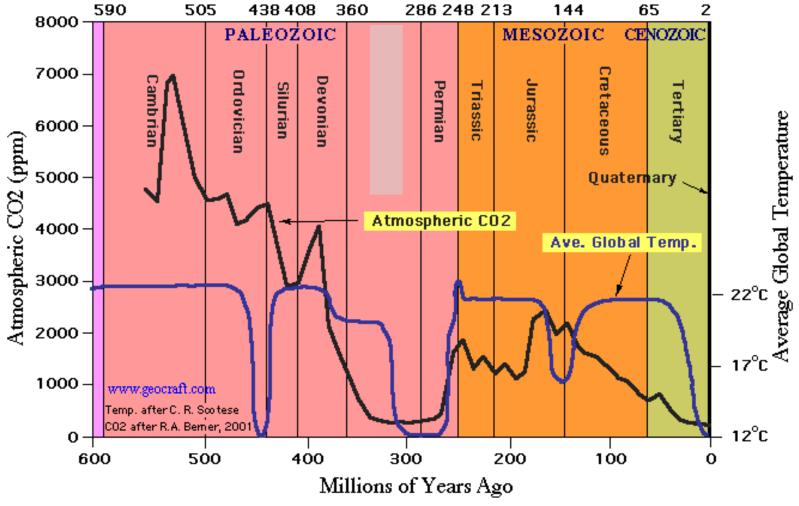
Holocene Temperature Variations

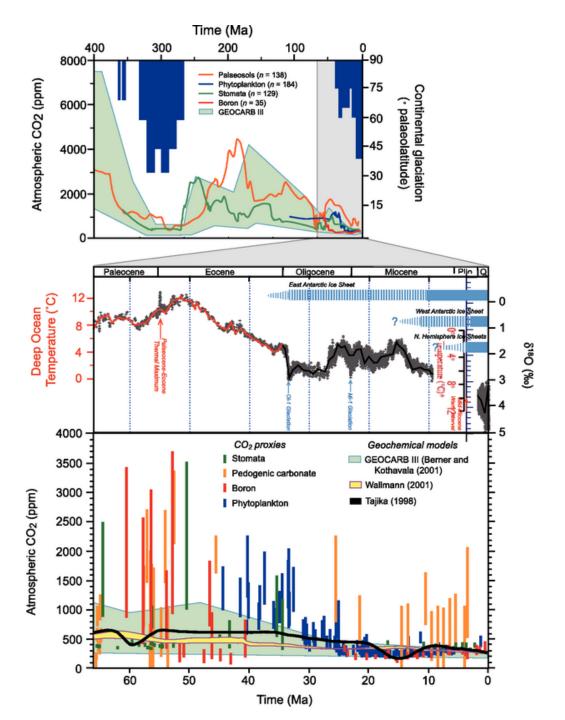


Global Temperature



Global Temperature




Temperature and CO₂

Beware of simplified graphs!

Global Warming Effects

- ...equilibrium global mean SAT (surface air temperature)
 warming for a doubling of atmospheric carbon dioxide
 (CO₂), or 'equilibrium climate sensitivity', is likely to lie in
 the range 2°C to 4.5°C, with a most likely value of about
 3°C
- It is very likely that heat waves will be more intense, more frequent and longer lasting in a future warmer climate.
- ...give reductions in pH of between 0.14 and 0.35 units in the 21st century...

Source: IPCC

Greenhouse Gases

- Different GHG contribute differently to the greenhouse effect
- Global Warming Potential (GWP)
 - ratio of warming caused by a 1kg GHG to 1kg CO₂
- GWP of some GHG:
 - Carbon dioxide (CO₂): 1
 - Methane: 21
 - N₂O: 310

- How much CO₂ is released by burning a kg of Methane? Oil? Coal?
- First consider methane (CH₄)
 - 4 hydrogen
 - 1 carbon

- Atomic weights
 - Hydrogen: 1
 - Carbon: 12
- Total weight per Methane molecule:
 - -12+1+1+1+1=16
- Carbon makes up 12/16 or 75% of the mass of methane
- 1kg of methane contains 0.75 kg of carbon

- Combustion reaction for methane:
 - $CH_4 + 2O_2 => CO_2 + 2H_2O$
 - watervapor is a by-product
- Atomic weight of Oxygen is 16
- The carbon in CO_2 makes up 27% of its weight $(12/(2 \times 16 + 12))$
- To put it another way: for every 1kg of carbon combusted, 3.67 kg of CO₂ is released
 - **1**/0.27 = 367%

- If 1 kg of methane is combusted, how much CO₂ is released?
 - 1 kg of methane x 0.75(kg carbon/kg methane) = 0.75kg of carbon
 - $0.75 \times 3.67 = 2.7 \text{ kg of CO}_2$
 - Note: more mass of CO₂ is released than there was of mass of methane

Emissions from Coal

- Coal contains
 - Carbon
 - Hydrogen
 - Sulfur
 - Nitrogen
 - others

Emissions from Coal

- Ratio of carbon mass to the molecular mass varies depending on type of coal
- A reasonable assumption range is 60-90%
 - Lignite on the lower end
 - Anthracite on the higher end

Emissions from Oil

- Emissions depend on the type of oil
- Consider C₁₆H₃₄
 - Ratio of carbon: $(16 \times 12)/(16 \times 12 + 34) = 85\%$
- How much CO₂ is released when 1 kg of C₁₆H₃₄ is combusted?

Emissions from Oil

- How much CO₂ is released when 1 kg of C₁₆H₃₄ is combusted?
 - 1kg of C₁₆H₃₄ contains 0.85 kg of carbon
 - 0.85 kg of carbon produces 3.11kg of CO₂ (0.85 x 3.67)

- Usually we are interested in metrics such as kg of CO₂ emissions per kWh of energy or per gallon
- How many kg of CO₂ are released from one gallon of diesel fuel?
 - Assume 3 kg of diesel fuel per gallon

- A back-of-the-envelope calculation:
 - Assume 3 kg of diesel fuel per gallon
 - $3 \times 0.85 \times 3.67 = 9.36 \text{ kg of CO}_2/\text{gallon}$
 - EPA value: 10.1 kg of CO₂/gallon

Specific energy densities (approximate values shown)

Methane: 56 MJ/kg

Natural Gas: 53 MJ/kg

Coal: 15-30 MJ/kg

Diesel: 45 MJ/kg

- Energy conversion efficiencies (approximate values shown)
 - Natural gas (Brayton cycle): ~25-35%
 - Coal (Rankine cycle): ~30-45%
 - Diesel (Diesel cycle): ~30-45%
- $E_{out} = \eta E_{in}$

- What is the mass of the CO₂ released in order to generate 1kWh of electrical energy using:
 - Natural gas (Brayton cycle, η = 30%)
 - Coal (Rankine cycle, $\eta = 40\%$)

- First compute how many kg of fuel are used:
 - 1kWh = 3.6MJ
 - Accounting for efficiency
 - $E_{in} = 3.6/0.3 = 12 \text{ MJ}$
 - Using the specific energy density
 - $m_{\text{nat gas}} = 12/53 = 0.23 \text{ kg}$

- Compute the mass of carbon:
 - $m_C = 0.23 \times 0.75 = 0.17 \text{ kg}$
- Next compute how many kg of CO₂ are produced:
 - $m_{Co2} = 0.17 \times 3.67 = 0.62 \text{ kg}$

- Compute for coal assuming:
 - Anthracite: 90% carbon, 32 MJ/kg
 - Rankine efficiency: 40%

- $E_{in} = 3.6/0.4 = 9 \text{ MJ}$
- $m_{coal} = 9/32 = 0.28 \text{ kg}$
- $m_c = 0.28 \times 0.9 = 0.25 \text{ kg}$
- $m_{CO2} = 0.25 \times 3.67 = 0.92 \text{ kg}$

- In this example:
 - Natural gas: 0.62 kg/kWh
 - Coal: 0.92 kg/kWh
- Actual values closer to
 - Natural gas: 0.50 kg/kWh
 - Coal: 1.00 kg/kWh

SO_{x}

- Coal, Oil, natural gas contain impurities such as Sulfur and Nitrogen
- Sulfur Oxides cause acid rain, damage to plants, water supply and endanger respiratory health
 - $S + O_2 => SO_2$ (sulfur dioxide)
 - $2SO_2 + O_2 => SO_3$ (sulfur trioxide)
 - $3SO_3 + H_2O => H_2SO_4$ (sulfuric acid)
- Released on the order of
 - Coal: 7kg/MWh
 - Natural gas: 5kg/MWh

NO_{x}

- NO_x causes
 - Smog
 - Acid rain
- Greenhouse gas
- Released on the order of 2kg/MWh

Questions

- How much money are you willing to pay to prevent all CO₂ from power plants from being emitted into the atmosphere?
- What happens if we do not reduce mankind's greenhouse gas emissions?
- Should the U.S. reduce its greenhouse gas emissions if China does not?