03-Circuit Elements Text: Chapter 1.6 – 1.9, 2.3

ECEGR 210 Electrical Circuits I

Overview

- Circuit Topology
- Series and Parallel Connections
- Sources

Circuit Topology

- Circuits are usually described graphically
- Need to be proficient in understanding basic circuit symbols
- Road map:
 - Circuit topology (branches, nodes, loops)
 - Active elements
 - Passive elements (later lectures)

Branch

- Branch: a single element in a network
 - Examples: single voltage source, resistor
 - Orientation does not matter
 - Terminals are part of the branch
- Example below has five branches

Node

- Node: point of common connection between two or more branches
- Example below has three nodes

Loops

- Loop: any closed path in a network
- Start at a node, pass through at least one other node and return to the original node
 - Direction matters
- Independent loop: a loop that contains at least one branch not contained in another loop
 - Independent loops have independent equations

Topology Relations

- For all networks
 - B = L + N -1
- Where
 - B = number of branches
 - L = number of loops
 - N = number of nodes

Series Connections

- Two branches (elements) are in series if they exclusively share a single node
- Same current flows through each element
- Network below:
 - A and B are in series
 - No other elements are in series

Parallel Connections

- Two branches (elements) are in series if they share both nodes
- Network below:
 - C, D, E are in parallel
- It is possible for two elements to not be in series or in parallel (e.g. B and C)

• Which elements are in series?

- Which elements are in series?
 - A, B
 - D, E, F

C prevents B and D from being in series

• Which elements are in parallel?

- Which elements are in parallel?
 - None
 - But C is in parallel if D, E and F can be combined into a single element G (more on this later)

Circuit Elements

- Two types of elements:
 - Active: supplies energy
 - Batteries, generators, etc
 - Passive: cannot supply energy (may or may not consume energy)
 - Resistors, inductors, capacitors

Voltage and Current Sources

- We are concerned with <u>ideal</u> voltage and current sources
- Voltage source: prescribed voltage, can supply infinite current with no loss
- Current source: prescribed current, can supply infinite voltage with no loss

Voltage and Current Sources

• V-I characteristics

Examples of non-ideal sources

Voltage/Current Sources

- Current and voltage sources are active elements
- Two types:
 - Independent (I or V are independent from other circuit elements)
 - Dependent: (I or V depend on other circuit elements)

Independent/Dependent Sources

Dependent Sources

- Dependent Voltage Sources:
 - Often controlled by voltage or current in the circuit
 - Generators voltage controlled by rotational speed
- Dependent Current Sources:
 - Often controlled by voltage or current in the circuit

 Find the power consumed or supplied by each element

- Find the power consumed or supplied by each element
 - 20 x -5 = -100W (supply)
 - 12 x 5 = 60 W
 - 6 x 8 = 48W
 - -0.2x5 x 8 = -8 W(supply)

Sources

- Voltage sources can be easily conceptualized as a battery
- What about current sources?
 - One example is in the internal model of a photovoltaic cell